22 research outputs found

    Stochastic Spatially-Extended Simulations Predict the Effect of ER Distribution on Astrocytic Microdomain Ca²⁺ Activity

    Get PDF
    Astrocytes are cells of the central nervous system that can regulate neuronal activity. Most astrocyte-neuron communication occurs at so-called tripartite synapses, where calcium signals are triggered in astrocytes by neuronal activity, resulting in the release of neuroactive molecules by the astrocyte. Most astrocytic Ca²⁺ signals occur in very thin astrocytic branchlets, containing low copy number of molecules, so that reactions are highly stochastic. As those sub-cellular compartments cannot be resolved by diffraction-limited microscopy techniques, stochastic reaction-diffusion computational approaches can give crucial insights on astrocyte activity. Here, we use our stochastic voxel-based model of IP3R-mediated Ca²⁺ signals to investigate the effect of the distance between the synapse and the closest astrocytic endoplasmic reticulum (ER) on neuronal activity-induced Ca²⁺ signals. Simulations are performed in three dimensional meshes characterized by various ER-synapse distances. Our results suggest that Ca2+ peak amplitude, duration and frequency decrease rapidly as ER-synapse distance increases. We propose that this effect mostly results from the increased cytosolic volume of branchlets that are characterized by larger ER-synapse distances. In particular, varying ER-synapse distance with constant cytosolic volume does not affect local Ca²⁺ activity. This study illustrates the insights that can be provided by three-dimensional stochastic reaction-diffusion simulations on the biophysical constraints that shape the spatio-temporal characteristics of astrocyte activity at the nanoscale

    Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses

    Get PDF
    International audienceMuch of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so-called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super-resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano-morphology of astrocytic processes powerfully shapes the spatio-temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo-osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron-astrocyte communication at so-called tripartite synapses, where astrocytic processes come into close contact with pre- and postsynaptic structures

    Control of Ca²⁺ signals by astrocyte nanoscale morphology at tripartite synapses

    Get PDF
    Much of the Ca²⁺ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so-called spongiform domain. A growing body of literature indicates that those astrocytic Ca²⁺ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca²⁺ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super-resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca²⁺ activity. Simulations demonstrate that the nano-morphology of astrocytic processes powerfully shapes the spatio-temporal properties of Ca²⁺ signals and promotes local Ca²⁺ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo-osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron-astrocyte communication at so-called tripartite synapses, where astrocytic processes come into close contact with pre- and postsynaptic structures

    Simulation of Astrocytic Calcium Dynamics in Lattice Light Sheet Microscopy Images

    Get PDF
    International audienceAstrocytes regulate neuronal information processing through a variety of spatio-temporal calcium signals. Advances in calcium imaging started to reveal astrocytic activities, but the complexity of the recorded data strongly call for computational analysis tools. Their development is hindered by the lack of reliable annotations that are essential for their evaluation and for the design of learning-based methods. To overcome the labeling problem, we present a framework to simulate realistic astrocytic calcium signals in 3D+time lattice light sheet microscopy (LLSM) images by closely modeling calcium kinetics in real astrocytes

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Simulation de la signalisation calcique dans les prolongements fins astrocytaires

    No full text
    Astrocytes are predominant glial cells in the central nervous system, which are essential for the formation of synapses, participate to the blood-brain barrier and maintain the metabolic, ionic and neurotransmitter homeostasis. Recently, astrocytes have emerged as key elements of information processing in the central nervous system. Astrocytes can contact neurons at synapses and modulate neuronal communication via the release of gliotransmitters and the uptake of neurotransmitters. The use of super-resolution microscopy and highly sensitive genetically encoded Ca2+ indicators (GECIs) has revealed a striking spatiotemporal diversity of Ca2+ signals in astrocytes. Most astrocytic signals occur in processes, which are the sites of neuron-astrocyte communication. Those processes are too fine to be resolved by conventional light microscopy so that super-resolution microscopy and computational modeling remain the only methodologies to study those compartments. The work presented in this thesis aims at investigating the effect of spatial properties (as e.g cellular geometry, molecular distributions and diffusion) on Ca2+ signals in those processes, which are deemed essential in such small volumes. Historically, Ca2+ signals were modeled with deterministic well-mixed approaches, which enabled the study of Ca2+ signals in astrocytic networks or whole-cell events. Those methods however ignore the stochasticity inherent to molecular interactions as well as diffusion effects, which both play important roles in small volumes. In this thesis, we present the spatially-extended stochastic model that we have developed in order to investigate Ca2+ signals in fine astrocytic processes. This work was performed in collaboration with experimentalists that performed electron as well as super-resolution microscopy. The model was validated against experimental data. Simulations of the model suggest that (1) molecular diffusion, strongly influenced by the concentration and kinetics of endogenous and exogenous buffers, (2) intracellular spatial organization of molecules, notably the co-clustering of Ca2+ channels, (3) ER geometry and localization within the cell, (4) cellular geometry strongly influence Ca2+ dynamics and can be responsible for the striking diversity of astrocytic Ca2+ signals. This work contributes to a better understanding of astrocyte Ca2+ signals, a prerequisite for understanding neuron-astrocyte communication and its influence on brain function.Les astrocytes sont des cellules gliales du système nerveux central, essentielles à la formation des synapses, à la barrière hémato-encéphalique ainsi qu’au maintien de l'homéostasie. Récemment, les astrocytes ont été identifiés comme éléments clés du traitement de l'information dans le système nerveux central. Les astrocytes peuvent communiquer avec les neurones au niveau des synapses et moduler la communication neuronale en libérant des gliotransmetteurs et en absorbant des neurotransmetteurs. L’utilisation de nouvelles techniques comme la microscopie à super-résolution et les indicateurs calciques encodés génétiquement a permis de révéler une grande diversité spatio-temporelle des signaux calciques astrocytaires. La majorité de ces signaux sont observés au sein de leurs prolongements cellulaires, qui sont le site de communication entre neurones et astrocytes. Ces prolongements sont trop fins pour être observés en microscopie optique conventionnelle, de sorte que la microscopie à super-résolution et la modélisation informatique sont les seules méthodes adaptées à leur étude. Les travaux présentés dans cette thèse ont pour but d’étudier l'effet des propriétés spatiales (telles que la géométrie cellulaire, les distributions moléculaires et la diffusion) sur les signaux calciques dans les prolongements astrocytaires. Historiquement, les signaux calciques ont été modélisés à l'aide d'approches déterministes non spatiales. Ces modèles ont permis l'étude des signaux calciques à l’échelle de la cellule entière voire à l’échelle du réseau de cellules. Ces méthodes ne prennent cependant pas en compte la stochasticité inhérente aux interactions moléculaires ainsi que les effets de diffusion, qui jouent un rôle important dans les petits volumes. Cette thèse présente un modèle stochastique et spatial qui a été développé dans le but d’étudier les signaux calciques dans les prolongements fins astrocytaires. Ce travail a été réalisé en collaboration avec des expérimentateurs, qui nous ont fourni des données de microscopie électronique et à super-résolution. Ces données ont permis de valider le modèle. Les simulations du modèle suggèrent que (1) la diffusion moléculaire, fortement influencée par la concentration et la cinétique des buffers calciques endogènes et exogènes, (2) l'organisation spatiale intracellulaire des molécules, notamment le co-clustering des canaux calciques, (3) la géométrie du reticulum endoplasmique et sa localisation dans la cellule, (4) la géométrie cellulaire influencent fortement les signaux calciques et pourraient être responsables de leur grande diversité spatio-temporelle. Ces travaux contribuent à une meilleure compréhension du traitement de l’information par les astrocytes, un prérequis pour une meilleure compréhension de la communication entre les neurones et les astrocytes ainsi que de son influence sur le fonctionnement du cerveau

    Simulation de la signalisation calcique dans les prolongements fins astrocytaires

    No full text
    Astrocytes are predominant glial cells in the central nervous system, which are essential for the formation of synapses, participate to the blood-brain barrier and maintain the metabolic, ionic and neurotransmitter homeostasis. Recently, astrocytes have emerged as key elements of information processing in the central nervous system. Astrocytes can contact neurons at synapses and modulate neuronal communication via the release of gliotransmitters and the uptake of neurotransmitters. The use of super-resolution microscopy and highly sensitive genetically encoded Ca2+ indicators (GECIs) has revealed a striking spatiotemporal diversity of Ca2+ signals in astrocytes. Most astrocytic signals occur in processes, which are the sites of neuron-astrocyte communication. Those processes are too fine to be resolved by conventional light microscopy so that super-resolution microscopy and computational modeling remain the only methodologies to study those compartments. The work presented in this thesis aims at investigating the effect of spatial properties (as e.g cellular geometry, molecular distributions and diffusion) on Ca2+ signals in those processes, which are deemed essential in such small volumes. Historically, Ca2+ signals were modeled with deterministic well-mixed approaches, which enabled the study of Ca2+ signals in astrocytic networks or whole-cell events. Those methods however ignore the stochasticity inherent to molecular interactions as well as diffusion effects, which both play important roles in small volumes. In this thesis, we present the spatially-extended stochastic model that we have developed in order to investigate Ca2+ signals in fine astrocytic processes. This work was performed in collaboration with experimentalists that performed electron as well as super-resolution microscopy. The model was validated against experimental data. Simulations of the model suggest that (1) molecular diffusion, strongly influenced by the concentration and kinetics of endogenous and exogenous buffers, (2) intracellular spatial organization of molecules, notably the co-clustering of Ca2+ channels, (3) ER geometry and localization within the cell, (4) cellular geometry strongly influence Ca2+ dynamics and can be responsible for the striking diversity of astrocytic Ca2+ signals. This work contributes to a better understanding of astrocyte Ca2+ signals, a prerequisite for understanding neuron-astrocyte communication and its influence on brain function.Les astrocytes sont des cellules gliales du système nerveux central, essentielles à la formation des synapses, à la barrière hémato-encéphalique ainsi qu’au maintien de l'homéostasie. Récemment, les astrocytes ont été identifiés comme éléments clés du traitement de l'information dans le système nerveux central. Les astrocytes peuvent communiquer avec les neurones au niveau des synapses et moduler la communication neuronale en libérant des gliotransmetteurs et en absorbant des neurotransmetteurs. L’utilisation de nouvelles techniques comme la microscopie à super-résolution et les indicateurs calciques encodés génétiquement a permis de révéler une grande diversité spatio-temporelle des signaux calciques astrocytaires. La majorité de ces signaux sont observés au sein de leurs prolongements cellulaires, qui sont le site de communication entre neurones et astrocytes. Ces prolongements sont trop fins pour être observés en microscopie optique conventionnelle, de sorte que la microscopie à super-résolution et la modélisation informatique sont les seules méthodes adaptées à leur étude. Les travaux présentés dans cette thèse ont pour but d’étudier l'effet des propriétés spatiales (telles que la géométrie cellulaire, les distributions moléculaires et la diffusion) sur les signaux calciques dans les prolongements astrocytaires. Historiquement, les signaux calciques ont été modélisés à l'aide d'approches déterministes non spatiales. Ces modèles ont permis l'étude des signaux calciques à l’échelle de la cellule entière voire à l’échelle du réseau de cellules. Ces méthodes ne prennent cependant pas en compte la stochasticité inhérente aux interactions moléculaires ainsi que les effets de diffusion, qui jouent un rôle important dans les petits volumes. Cette thèse présente un modèle stochastique et spatial qui a été développé dans le but d’étudier les signaux calciques dans les prolongements fins astrocytaires. Ce travail a été réalisé en collaboration avec des expérimentateurs, qui nous ont fourni des données de microscopie électronique et à super-résolution. Ces données ont permis de valider le modèle. Les simulations du modèle suggèrent que (1) la diffusion moléculaire, fortement influencée par la concentration et la cinétique des buffers calciques endogènes et exogènes, (2) l'organisation spatiale intracellulaire des molécules, notamment le co-clustering des canaux calciques, (3) la géométrie du reticulum endoplasmique et sa localisation dans la cellule, (4) la géométrie cellulaire influencent fortement les signaux calciques et pourraient être responsables de leur grande diversité spatio-temporelle. Ces travaux contribuent à une meilleure compréhension du traitement de l’information par les astrocytes, un prérequis pour une meilleure compréhension de la communication entre les neurones et les astrocytes ainsi que de son influence sur le fonctionnement du cerveau

    Simulating calcium signaling in fine astrocytic processes

    No full text
    Les astrocytes sont des cellules gliales du système nerveux central, essentielles à la formation des synapses, à la barrière hémato-encéphalique ainsi qu’au maintien de l'homéostasie. Récemment, les astrocytes ont été identifiés comme éléments clés du traitement de l'information dans le système nerveux central. Les astrocytes peuvent communiquer avec les neurones au niveau des synapses et moduler la communication neuronale en libérant des gliotransmetteurs et en absorbant des neurotransmetteurs. L’utilisation de nouvelles techniques comme la microscopie à super-résolution et les indicateurs calciques encodés génétiquement a permis de révéler une grande diversité spatio-temporelle des signaux calciques astrocytaires. La majorité de ces signaux sont observés au sein de leurs prolongements cellulaires, qui sont le site de communication entre neurones et astrocytes. Ces prolongements sont trop fins pour être observés en microscopie optique conventionnelle, de sorte que la microscopie à super-résolution et la modélisation informatique sont les seules méthodes adaptées à leur étude. Les travaux présentés dans cette thèse ont pour but d’étudier l'effet des propriétés spatiales (telles que la géométrie cellulaire, les distributions moléculaires et la diffusion) sur les signaux calciques dans les prolongements astrocytaires. Historiquement, les signaux calciques ont été modélisés à l'aide d'approches déterministes non spatiales. Ces modèles ont permis l'étude des signaux calciques à l’échelle de la cellule entière voire à l’échelle du réseau de cellules. Ces méthodes ne prennent cependant pas en compte la stochasticité inhérente aux interactions moléculaires ainsi que les effets de diffusion, qui jouent un rôle important dans les petits volumes. Cette thèse présente un modèle stochastique et spatial qui a été développé dans le but d’étudier les signaux calciques dans les prolongements fins astrocytaires. Ce travail a été réalisé en collaboration avec des expérimentateurs, qui nous ont fourni des données de microscopie électronique et à super-résolution. Ces données ont permis de valider le modèle. Les simulations du modèle suggèrent que (1) la diffusion moléculaire, fortement influencée par la concentration et la cinétique des buffers calciques endogènes et exogènes, (2) l'organisation spatiale intracellulaire des molécules, notamment le co-clustering des canaux calciques, (3) la géométrie du reticulum endoplasmique et sa localisation dans la cellule, (4) la géométrie cellulaire influencent fortement les signaux calciques et pourraient être responsables de leur grande diversité spatio-temporelle. Ces travaux contribuent à une meilleure compréhension du traitement de l’information par les astrocytes, un prérequis pour une meilleure compréhension de la communication entre les neurones et les astrocytes ainsi que de son influence sur le fonctionnement du cerveau.Astrocytes are predominant glial cells in the central nervous system, which are essential for the formation of synapses, participate to the blood-brain barrier and maintain the metabolic, ionic and neurotransmitter homeostasis. Recently, astrocytes have emerged as key elements of information processing in the central nervous system. Astrocytes can contact neurons at synapses and modulate neuronal communication via the release of gliotransmitters and the uptake of neurotransmitters. The use of super-resolution microscopy and highly sensitive genetically encoded Ca2+ indicators (GECIs) has revealed a striking spatiotemporal diversity of Ca2+ signals in astrocytes. Most astrocytic signals occur in processes, which are the sites of neuron-astrocyte communication. Those processes are too fine to be resolved by conventional light microscopy so that super-resolution microscopy and computational modeling remain the only methodologies to study those compartments. The work presented in this thesis aims at investigating the effect of spatial properties (as e.g cellular geometry, molecular distributions and diffusion) on Ca2+ signals in those processes, which are deemed essential in such small volumes. Historically, Ca2+ signals were modeled with deterministic well-mixed approaches, which enabled the study of Ca2+ signals in astrocytic networks or whole-cell events. Those methods however ignore the stochasticity inherent to molecular interactions as well as diffusion effects, which both play important roles in small volumes. In this thesis, we present the spatially-extended stochastic model that we have developed in order to investigate Ca2+ signals in fine astrocytic processes. This work was performed in collaboration with experimentalists that performed electron as well as super-resolution microscopy. The model was validated against experimental data. Simulations of the model suggest that (1) molecular diffusion, strongly influenced by the concentration and kinetics of endogenous and exogenous buffers, (2) intracellular spatial organization of molecules, notably the co-clustering of Ca2+ channels, (3) ER geometry and localization within the cell, (4) cellular geometry strongly influence Ca2+ dynamics and can be responsible for the striking diversity of astrocytic Ca2+ signals. This work contributes to a better understanding of astrocyte Ca2+ signals, a prerequisite for understanding neuron-astrocyte communication and its influence on brain function
    corecore